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Examples of noncompact nonpositively curved manifolds

Grigori Avramidi and T. Tâm Nguyễn-Phan

Abstract

We give a simple construction of new, complete, finite volume manifolds M of bounded,
nonpositive curvature. These manifolds have ends that look like a mixture of locally symmetric
ends of different ranks and their fundamental groups are not duality groups.

1. Introduction

The goal of this paper is to give a very simple construction of complete, finite volume, tame†

n-manifolds M of bounded, nonpositive curvature. The manifolds obtained have interesting
properties. For instance, the large scale geometry of their ends is a mixture of different types
and their fundamental groups are not ‘duality groups’‡, in contrast with the typical examples
of nonpositively curved manifolds such as locally symmetric spaces of noncompact type. If M
is a locally symmetric manifold of noncompact type, then from a large-scale point of view M
looks like a union of flat r-dimensional sectors, where r is the Q-rank of M . So for (arithmetic¶)
locally symmetric spaces, their large-scale geometry is determined by the rational structures
of the spaces. Moreover, the fundamental group of M is a duality group, or in other words, the
lift of the end of M to the universal cover M̃ has homology concentrated in one dimension.
This is a consequence of the fact that it is homotopy equivalent to the rational Tits building
(of M), which is homotopy equivalent to a wedge of spheres of a single dimension.

In [2], we tried to capture the topology of the ends of general nonpositively curved, not
necessarily locally symmetric, manifolds M from the geometry of M and M̃ , showing that many
properties of locally symmetric manifolds that could be seen only by doing arithmetic before
can actually be seen as purely nonpositive curvature phenomena. For example, we obtained
that the lift of the end of M in M̃ has homology only in dimension less than n/2. In other
words, it is not an arithmetic phenomenon that the rational Tits building of a locally symmetric
space has dimension less than half the dimension of the space. However, one cannot take this
analogy too far and base all aspects of nonpositively curved manifolds on delicacies of locally
symmetric spaces because there are still arithmetic things that are due to arithmetics, such as
the rational Tits building being a building, and this is one of the main points of the examples
in this paper.

Below, M is tame, so it is homeomorphic to the interior of a compact manifold-with-
boundary, (M,∂M) and its universal cover is a (noncompact) manifold-with-boundary

(M̃, ∂M̃). We will abuse notation slightly and denote these manifolds-with-boundary by
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Figure 1 (colour online).

(M,∂M) and (M̃, ∂M̃), respectively. Note that ∂M̃ → ∂M is regular cover with covering group
π1M , so we call it the π1M -cover of ∂M .

Theorem 1. For any 0 � i � j < �n/2�, there is a tame, complete, finite volume, Rieman-

nian n-manifold M of bounded nonpositive curvature with the property that Hk(∂M̃) �= 0 if
and only if i � k � j.

In fact, in our examples, ∂M̃ is homotopy equivalent to a union of wedges of spheres of
dimensions ranging from i to j.

Remark. One can show that

H∗(∂M̃) ∼= Hn−1−∗(Bπ1M ; Zπ1M),

so as an algebraic corollary, π1M is not a duality group if j > i.

The construction is done inductively and the main idea is to assemble nonpositively curved
spaces like products of hyperbolic manifolds with cusps via codimension 2 surgery along totally
geodesic submanifolds. As usual, one needs to smooth out the metric around the places where
surgery is done, but in this case, this is extremely easy.

The codimension 2 surgery involved at each step can be described as follows. We choose
suitable manifolds Mk

1 and Mk
2 , each of which has an open set that is isometric to Tk−2 × D2,

where Tk−2 is the flat square torus. Then we remove Tk−2 × D2
ε from each Mi and glue the

resulting spaces together along the boundary preserving the product structure on Tk−2 × ∂D2
ε

to obtain a new manifold M whose metric is singular on Tk−2 × ∂D2
ε. Since the gluing is an

isometry on the first factor, the singularity of the metric lies in the second factor, which is
the double of (D2 − D2

ε) along ∂D2
ε. To smooth out this singularity, replace this double by a

‘funnel’ that is the surface of revolution generated by the curve α in Figure 1, which clearly has
nonpositive Gaussian curvature. Thus, we obtain a bounded nonpositively curved manifold M
whose ends correspond to those of M1 and M2 and therefore have finite volume.
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We illustrate a simple, nontrivial case here. The general case will be treated in the body of
the paper.

An example. We construct M by taking two particular manifolds M1 and M2 (as described
below) with isometric totally geodesic submanifolds T1 and T2 (respectively) and gluing the
complement of an ε-neighborhood of T1 to the complement of an ε-neighborhood of T2.

Let M1 = S × S be the product of two copies of a punctured torus endowed with a complete
hyperbolic metric with finite area, and let a be a simple, closed geodesic in S. Modify the
metric smoothly on a regular neighborhood of a in S and rescale it if necessary to make it a
product (−1, 1) × S1 without creating positive curvature on S. Give M1 = S × S, the product
of the new metrics on S. Then T1 := a× a is a flat, square 2-torus and has a neighborhood
isometric to D2 × T1.

Let M2 be obtained by taking a finite volume, complete, hyperbolic 4-manifold H with at
least three torus-cusps C1, C2 and C3, truncating C2 and C3 and gluing ∂C2 to ∂C3 via an
affine diffeomorphism. Assume for simplicity that the cross-sections of each of these cusps are
homothetic to the flat, square, 3-torus T3, so that the gluing can be done via an isometry and
gives M2 a bounded nonpositively curved metric. (This is standard but we will explain it in
the next section.) One can make it so that the metric on M2 is a product (−1, 1) × T3 on a
neighborhood of where the gluing takes place. Now, there is a square 2-torus T2 factor in T3,
so T2 has a neighborhood isometric to the product D2 × T2.

Let M be obtained by gluing the complement of the ε-neighborhood of T1 to the complement
of the ε-neighborhood of T2 along the boundaries. After smoothing out the metric as explained
above, we obtain a finite volume, bounded nonpositively curved manifold M with two kinds
of cusps, one corresponding to the end of M1, and the other corresponding to the cusp C1

of M2.
In this example, ∂M̃ is homotopically equivalent to a graph Σ with infinitely many

components, each component either contractible or of infinite type (homotopy equivalent to
an infinite wedge of circles). The first kind of cusp looks like a 2-dimensional flat sector from
afar and is responsible for the infinite type components in Σ (see the product formula in
Subsection 2.2). The second kind looks like a ray from afar and contributes the contractible
components in Σ.

All the simplifying assumptions made above can be taken care of in general when no such
assumptions are made. This is dealt with in the rest of the paper and is not difficult.

A simpler construction that gives a manifold very similar to the manifold M above can be
obtained by taking (M1 − T1) and stretching out the metric in a neighborhood of T1 to make
it complete and have finite volume without creating positive curvature. Since the metric on
M1 is a product D2 × T1, this can be achieved if one can stretch out the metric on (D2 − {0})
to obtain a complete, bounded nonpositively curved metric with finite area. This clearly can
be done and is illustrated in Figure 2. This example is a good example but we did not discuss
it above because it does not illustrate every step in the construction given in this paper. But
we would like to note that this is a counterexample to a conjecture of Farb on geometric rank
1 manifolds and we will discuss this in Subsection 4.3.

2. Proof of Theorem 1, part A - The construction

2.1. A special case

The nontrivial part in proving Theorem 1 is proving the special case when n is even and
i = 0 and j = n/2 − 1. This is done by inductively constructing manifolds Mn satisfying (1) in
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Proposition 2. In order to facilitate the induction, the manifolds Mn need to have the additional
properties (2)–(4).

Proposition 2. For even n, there is a tame, complete, finite volume, n-manifold Mn of
bounded non-positive curvature so that:

(1) Hk(∂M̃n) �= 0 for k < n/2;
(2) Mn has at least two ends;
(3) Mn contains an isometrically embedded T := Tn−1 × (−1, 1), where Tn−1 = (S1)n−1 is

a square flat torus of injectivity radius 1; and
(4) Mn \ T is connected.

2.2. The general case

Theorem 1 follows from Proposition 2 by taking products with circles and non-compact
surfaces. The key to showing this is the following product formula.

Product formula

If M and N are tame, aspherical manifolds, then one has the following product formula

∂ ˜(M ×N) ∼ ∂M̃ ∗ ∂Ñ, (1)
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where the symbol ∼ denotes homotopy equivalence.

Proof. This follows from

∂M̃ ∗ ∂Ñ = ∂M̃ × Cone(∂Ñ)
⋃

∂˜M×∂ ˜N
Cone(∂M̃) × ∂Ñ,

∂(M̃ × Ñ) = ∂M̃ × Ñ
⋃

∂˜M×∂ ˜N
M̃ × ∂Ñ.

The quantities on the right-hand side of the above two lines are homotopy equivalent since Ñ
and M̃ are contractible and thus are, respectively, homotopy equivalent to the cones on their
boundaries. Therefore,

∂M̃ ∗ ∂Ñ ∼ ∂(M̃ × Ñ).

Since M̃ ×N = M̃ × Ñ , the above product formula follows. �

Shifting dimensions via products with circles and surfaces

Note that for a non-compact surface Σ the cover ∂Σ̃ is homotopy equivalent to an infinite
union of points, which we will write as ∂Σ̃ ∼ ∨∞

i=1S
0. Therefore, ∂(M̃ × Σ) ∼ ∂M̃ ∗ (∨∞

i=1S
0) ∼

∨∞
i=1(∂M̃ ∗ S0). So

H∗(∂(M̃ × Σ)) ∼=
∞⊕
i=1

H∗−1(∂M̃). (2)

It is also clear that ∂(M̃ × S1) ∼ ∂M̃ so we have

H∗(∂(M̃ × S1)) ∼= H∗(∂M̃). (3)

Proof of Theorem 1 given Proposition 2

The proposition gives a 2(j − i + 1)-dimensional manifold M2(j+i−1) whose homology
Hk(∂M̃2(j+1−i)) does not vanish precisely in the band of dimensions 0 � k � j − i. Crossing
with i noncompact surfaces shifts this band into the desired dimension range i � k � j (by
formula (2)) and then crossing with n− 2j − 2 circles raises the dimension of the manifold to
n without affecting the band (by formula (3)). So, the resulting manifold

M = M2(j+1−i) × (Σ)i × (S1)n−2j−2, (4)

satisfies the conclusions of Theorem 1.

2.3. Proof of Proposition 2

The manifolds Mn are constructed inductively, as follows.

Base case

Topologically, the base case M2 is a twice-punctured torus. Start with a hyperbolic metric on
M2. In this metric, the two punctures appear as cusps. Let b be a geodesic† that starts in
one cusp and ends in the other cusp, and a a nonseparating closed geodesic loop that does
not intersect b. Let length(a) � 2 and modify the metric so that it is a flat cylinder on an

†It is not important that b is a geodesic. We could take any path.
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1-neighborhood of a, hyperbolic outside of a compact set, and still nonpositively curved.† It is
easy to see that M2 with this metric satisfies the conditions in the proposition.

Before starting the inductive construction, we need to introduce a manifold that will
be used in the inductive step. As mentioned in the introduction, the construction involves
assembling nonpositively curved manifolds containing totally geodesic tori of low codimension.
The following is one way to obtain such manifolds.

The building blocks Nn (Hyperbolic straightjackets)

Start with a complete, finite volume, connected, hyperbolic n-manifold Hn. After passing to a
finite cover, if necessary, we may assume that Hn has at least three cusps, at least two of which
(called C+ and C−) are homeomorphic to Tn−1 × (0,∞). Then, the manifold Hn \ (C+ ∪ C−)
has two boundary components ∂C+

∼= Tn−1 ∼= ∂C−. Moreover, the induced metrics on ∂C+

and ∂C− are flat. Now, let Nn = (Hn \ (C+ ∪ C−))/∂C+ ∼ ∂C− be a manifold obtained by
gluing the boundaries ∂C+ and ∂C− by an affine diffeomorphism.

Proposition 3. For any r > 0, the manifold Nn has a complete, finite volume, Riemannian
metric of bounded non-positive curvature in which a regular neighborhood of ∂C+ is isometric
to Tn−1 × (−r, r), where Tn−1 is a square flat torus.

First, note in the case when ∂C+ and ∂C− are square, flat tori and the affine diffeomorphism
is an isometry, this is not hard. The hyperbolic metric near ∂C+ or ∂C− is a warped product
and has the form

ghyp = e−2tg0 + dt2,

where g0 is a square, flat metric on Tn−1 and for some a, the slice t = a corresponds to where
∂C+ or ∂C− is. So around where ∂C+ and ∂C− are identified, the metric, after reparametrizing
t via a shift by a, is

e2|t|−2ag0 + dt2

on Tn−1 × [−1, 1], which is not smooth at t = 0. But one can replace the warping function
e2|t|−2a by a smooth, convex function that, for some small enough ε, agrees with e2|t|−2a outside
(−2ε, 2ε) and that is equal to a positive constant on (−ε, ε). Change the range‡ (−ε, ε) of t-
parameter to (−r, r) but keep the metric otherwise the same to get a desired metric. The fact
that the resulting metric has nonpositive curvature is a direct application of the Bishop-O’Neil
formula [3].

In the general case, the main point is to first interpolate between the square flat metric g0

on Tn−1 and another flat metric g1 on Tn−1 so that the problem reduces to the above. That
is, consider the following metric g on Tn−1 × [0,∞).

g = e−2t(h(t)g0 + (1 − h(t))g1) + dt2,

for some smooth function h : [0,∞) → [0, 1] such that h(t) = 0 when t is close to 0 and h(t) = 1
when t > l, for some l. One can pick l large enough and an appropriate h so that g has
nonpositive curvature as shown in [1, Lemma 2.2]. Truncate that cusp at t = a > l and apply
the above special case to get the desired metric.

Now we are ready for the inductive part of the construction.

†We can do this without changing the length of a.
‡In other words, we replace the cylinder (−ε, ε) × Tn−1 by the cylinder (−r, r) × Tn−1.
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Inductive step

Suppose we have constructed Mn−2. We need to build Mn. Look at Mn−2 ×M2. It contains
an isometrically embedded

Tn−3 × (−1, 1) × a× (−1, 1) ∼= Tn−2 × (−1, 1)2

⊃ Tn−2 × D2.

On the other hand, suppose that Nn is an n-dimensional ‘building block’ described above, that
is, a manifold obtained from a hyperbolic manifold by gluing a pair of cusps together so that
they give an isometrically embedded copy of

Tn−1 × (−1, 3) ⊃ Tn−2 × S1 ×
(
(−1, 1)

∐
(1, 3)

)

⊃ (
Tn−2 × D2

)∐(
Tn−1 × (1, 3)

)
.

The ‘Tn−2 × D2’ is used in codimension 2 surgery, and the ‘Tn−1 × (1, 3)’ implies that the
resulting manifold Mn will have property (3), which let us continue the induction. Also recall
that Nn has at least one cusp that is not glued to anything. We claim that the manifold

Mn :=
[
Nn \ (Tn−2 × D2)

] ⋃
Tn−2×S1

[
(Mn−2 ×M2) \ (Tn−2 × D2)

]
(5)

obtained by taking the ‘connect sum along Tn−2’ has a complete, finite volume metric of
bounded nonpositive curvature. We explain this next.

Flat, codimension 2 surgery in nonpositive curvature

Suppose M and N are complete, finite volume manifolds of bounded nonpositive curvature
and S ⊂ M a totally geodesic submanifold. Suppose further that a regular neighborhood of S
is isometric to S × D2.

Cusps
The manifold M \ S has a complete, finite volume, nonpositively curved metric of bounded
nonpositive curvature obtained by replacing S × (D2 − {0}) by S × funnel, where a funnel is
defined as follows.

Definition 4 (Funnel). Let f : (0, 1] → R be a smooth, strictly convex, non-negative
function that satisfies the following properties.

(i) f(x) = 0 when x � 1/2.
(ii) f(x) → ∞ as x → 0.
(iii)

∫ 1

0
f(x)dx < ∞.

Let funnel be the surface of revolution obtained by rotating the graph of f(x) around the y-
axis. Then it is diffeomorphic to D2 − {0} but has negative Gaussian curvature (because f(x)
is strictly convex) and finite area (because of condition (iii) above). See Figure 2.

Remark. We use this in the alternative construction (Subsection 4.1) which works in special
cases, but do not need it for the proof of Theorem 1.

Definition 5 (2-Sided Funnel). A 2-sided funnel is the surface of revolution obtained by
rotating in the curve α(t), where α(t) is a smooth curve defined as in Figure 1, around the
y-axis. A 2-sided funnel is diffeomorphic to S1 × (−1, 1) but has negative Gaussian curvature.
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Codimension two connect sum. If N also contains an isometrically embedded copy of S × D2,
then the S-connect sum

M#SN :=
[
M \ (S × D2)

] ∪S×S1

[
N \ (S × D2)

]
(6)

has a complete, finite volume metric of bounded nonpositive curvature. After cutting out the
regular neighborhoods S × D2 from both manifolds, the metric is obtained by inserting a tube
that looks topologically like S × (S1 × (0, 1)) but metrically looks like S × {two sided funnel}.

Remark. In the notation of equation (6),

Mn = Nn#Tn−2(Mn−2 ×M2),

so Mn has a complete finite volume metric of bounded nonpositive curvature.

3. Proof of Theorem 1, part B - Properties of the manifold Mn

The manifold Mn contains the isometrically embedded T := Tn−1 × (1, 3), which shows
property (3). The space Nn \ T is connected (because it is homotopy equivalent to the original
connected hyperbolic manifold Hn we had before we glued two of its cusps together) and the
product Mn−2 ×M2 is connected (the factors Mn−2 and M2 are connected because they satisfy
property (4)) so the space

Mn \ T = [(Nn \ T ) \ (Tn−2 × D2)]
⋃

Tn−2×S1

[(Mn−2 ×M2) \ (Tn−2 × D2)]

obtained via the codimension 2 surgery is also connected. This proves property (4).
Since both Nn and Mn−2 ×M2 have ends, the manifold Mn has at least two ends. This

shows property (2). It also implies that ∂M̃n has at least two components, so

H0(∂M̃n) �= 0.

It remains to establish the positive dimensional cases of property (1).

3.1. Computing H>1(∂M̃n)

Next, let z be a connected homology cycle representing a nontrivial homology class in
Hk(∂M̃n−2) for 0 < k < n/2 − 1. Let b̃ be a lift of the path connecting the two ends of
the twice punctured torus, and b+ and b− its endpoints. Look at the suspended cycle
Σz = z ∗ {b+, b−}. Since z is connected, the suspended cycle Σz is simply connected. Therefore,
a map Σz → ∂M̃n−2 ∗ ∂M̃2 ∼ ∂( ˜Mn−2 ×M2) which represents the nontrivial (k + 1)-homology
class [Σz] ∈ Hk+1(∂( ˜Mn−2 ×M2)) lifts to a component of ∂M̃n. So, for 1 < k + 1 < n/2, we
have

Hk+1(∂M̃n) �= 0.

3.2. Computing H1(∂M̃n)

Since Mn−2 has two ends and Mn−2 \ T is connected, we can find a path β : [0, 1] → Mn−2 \ T
connecting two different ends of Mn−2. Let z = ∂β̃ ∈ H0(∂M̃n−2) be the non-trivial zero cycle
obtained as the boundary of a lift β̃ of β. Then, the image of Σz = {β+, β−} ∗ {b+, b−} is
contractible in Mn because it bounds β × b. Therefore, in this case the nontrivial homology
cycle [Σz] ∈ H1(∂( ˜Mn−2 ×M2)) also lifts to a cycle in a component of ∂M̃n, showing that

H1(∂M̃n) �= 0.
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In summary, we have shown that Hk(∂M̃n) �= 0 for k < n/2. This proves property (1), finishes
the proof of Proposition 2, and thus also the proof of Theorem 1.

4. Miscellaneous

4.1. A variant for narrow bands that only uses surfaces

Note that the regular neighborhood of a× a inside M2 ×M2 is isometric to a× a×D2
ε .

Replacing D2
ε by a ‘funnel’ metric on D2

ε \ {0}, we get a complete, finite volume metric of
bounded nonpositive curvature on

M ′
4 := (M2 ×M2) \ (a× a).

The arguments in the previous section apply to show that H0(∂M̃ ′
4) �= 0 and H1(∂M̃ ′

4) �= 0.
Taking products of the manifold M ′

4 with itself and using the product formula (1), we get

manifolds (M ′
4)

m of dimension 4m which have Hk(∂(̃M ′
4)m) �= 0 precisely when m− 1 � k �

2m− 1.

Remark. Taking products with circles S1 and non-compact surfaces M2, we get in this
way manifolds M := (M ′

4)
m × (M2)p × (S1)q of dimension dimM = 4m + 2p + q for which

Hk(∂M̃) is non-zero in a band of dimensions m− 1 + p � k � 2m− 1 + p.

4.2. Large scale geometry

Denote by [n] the set with n elements. It is easy to see that the main construction gives
manifolds that on a large scale look like the Euclidean cone on a complex Ck, where Ck is
defined inductively via C0 = [2], C1 = ([2] ∗ [2])

∐
[n4], . . . , Ck = (Ck−1 ∗ [2])

∐
[n2k] where n2k

is the number of ends of the 2k dimensional building block N2k (see Subsection 2.3 for a
description of N2k).

4.3. Geometric rank-1 manifolds with π1 generated by a cusp

Once upon a time, there was a conjecture that said the following.

Conjecture 6 (Farb). Let M be a tame, complete, finite volume n-manifold of bounded
nonpositive curvature. Suppose M has geometric rank one. Then there is a loop in M that
cannot be homotoped to leave every compact set.

This is known to be true in dimension � 3. We will first show that the manifold (M1 − T1)
from the introduction is a 4-dimensional counterexample to this conjecture, and then we will
build higher dimensional counterexamples afterward.

A 4-dimensional counterexample

We will drop the index ‘1’ in (M1 − T1) as we no longer need it. First, note that the manifold
W := M − T has geometric rank 1 because it is neither a locally symmetric space, nor a
product.† Thus, we only need to show that all loops in W can be homotoped to leave all
compact sets. This is true because of the following lemma.

†W is not a product of two noncompact manifolds because it has more than one end. It is not a product of
a non-compact manifold and a compact manifold, because its two ends do not have a common factor: The end
cross sections are T3 and the irreducible graph manifold ((T2 −D2) × S1)

⋃
S1×S1 (S1 × (T2 −D2)).
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Lemma 7. Let (S1, ∂S1) and (S2, ∂S2) be compact, connected manifolds-with-boundary
and pick basepoints si ∈ ∂Si. Suppose that Ti ⊂ (Si − ∂Si) are compact nonseparating
hypersurfaces. Let S1 ∨ S2 = (S1 × {s2}) ∪ ({s1} × S2). Then the composition

(S1 ∨ S2) ↪→ ∂(S1 × S2) ↪→ (S1 × S2) − (T1 × T2),

is π1-onto.

Proof. If γ(t) = (γ1(t), γ2(t)) is a loop in (S1 × S2) − (T1 × T2), then the times at which
γ1 crosses T1 are disjoint from the times at which γ2 crosses T2. So, one can decompose γ as
concatenation γ = γ(1) · · · · · γ(r) of paths where for each γ(k) either the first coordinate path
γ

(k)
1 never crosses T1 or the second coordinate path γ

(k)
2 never crosses T2. Using the fact that

the Ti are nonseparating, we can homotope γ to be a concatenation of such loops (all based at
(s1, s2)). Finally, each such loop γ(k) is homotopic to γ

(k)
1 · γ(k)

2 , so we are done. �

Remark. Since T has codimension 2 in M , there is a loop γ in M that goes around T . One
might wonder how γ can be a product of elements in S1 ∨ S2. Let bi be a loop in Si based at si
that intersects transversely with Ti precisely once. We claim that γ = [b1, b2] = b1b2b

−1
1 b−1

2 . To
see this, observe that T ′ := b1 × b2 is an embedded torus in M that intersects T transversely
at exactly one point p. So γ can be taken to be a loop in T ′ that goes around p. Removing T
from M results in removing p from T ′. Since T ′ − {p} is a punctured torus, the loop γ, which
goes around the puncture, must be the commutator of the generators b1 and b2.

Higher dimensional counterexamples can be constructed in a very similar manner. In
dimension n � 4, let S1 be the punctured torus as before, and let T1 = a1. Let S2 be the
building block Nn−2 and let T2 be Tn−3, the square flat torus in Nn−2 in Proposition 3. The
manifold W := (S1 × S2) − (T1 × T2) is an n-dimensional counterexample to Conjecture 6. It
has geometric rank one for the same reasons as in the above example. To see that π1(W ) is
generated by loops coming from the end of M , we apply the above lemma. Thus, we have
proved that Conjecture 6 is false for all n � 4.

Proposition 8. There is a counterexample to Conjecture 6 for each n � 4.

4.4. A thick-thin conjecture for nonpositively curved manifolds

We would like to suggest the following replacement for Conjecture 6.

Conjecture 9. Let M be a tame, complete, finite volume n-manifold of bounded†

nonpositive curvature. Then there is a compact subset C ⊂ M that cannot be homotoped
to leave every compact set.

Note that this conjecture makes sense (and is most easily stated) for general finite volume
manifolds of bounded nonpositive curvature, not just those of geometric rank one. The
conjecture is known to be true for locally symmetric manifolds M by a result of Pettet and
Souto [5].‡ Therefore, it is enough to understand it for geometric rank one manifolds.

Note that the examples in this paper are not counterexamples to Conjecture 9. To see this,
pick an embedded loop bi in Si that intersects Ti transversely exactly once. This is possible

†The conjecture is not true without the lower curvature bound. There is a complete, finite volume, negatively
curved metric on the product Σ × R, where Σ is a closed surface with genus g � 2 [4].

‡Such locally symmetric manifolds contain maximal periodic flat tori Tr → M , where r is the R-rank of the
locally symmetric space M . Pettet and Souto showed these tori cannot be homotoped into the end (even though
loops in such a locally symmetric space can always be homotoped into the end whenever the Q-rank is � 2).
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since the hypersurfaces Ti are nonseparating. Now, let T ′
i be a parallel copy of Ti. We pick

it close to Ti, so that bi intersects T ′
i transversely at exactly one point xi = bi ∩ T ′

i . Then
the closed submanifolds T ′

1 × b2 and b1 × T ′
2 of W intersect transversely at a single point

x1 × x2. Therefore, the interior of W cannot be homotoped into its end, because if there was
such a homotopy ht : W → W with h0 = IdW and h1(W ) contained in a sufficiently small
neighborhood of the end of W , then we could move T ′

1 × b2 via the homotopy ht(T ′
1 × b2) to

be disjoint from b1 × T ′
2. This is a contradiction because intersection number is a homological

invariant. Therefore, there is no such homotopy.
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